Gibbs系綜就是

(N,P,T)

系綜,又叫等壓等溫系綜(isobaric-isothermal ensemble)。

該系綜的配分函式定義如下:

\Delta = \sum_{V} \sum_{E} \Omega(N,V,E)e^{-\beta E -\beta PV}

即用微正則系綜中的配分函式可求得。

如果要計算理想氣體的Gibbs系綜配分函式,用到求和化積分,需要注意對體積積分的話,就要加上無量綱化因子。這個因子有兩種取法(考慮到單個粒子的平均佔據體積即

v = V/N

,使用理想氣體狀態方程就得到

N/V =  P/(k_{\rm{B}}T)

):

\sum_V \cdot = \int \cdot C {\rm{d}}V \\ C=\beta P \, \, {\rm{or}}\, \, C=\frac{N}{V}

\Delta = \frac{1}{N!}\int  \int e^{-\beta \frac{p^2}{2m}} {\rm{d}}\, \Gamma \, e^{-\beta PV} C {\rm{d}}\, V\\ = \frac{1}{N!} \frac{1}{\lambda^3}\int V^{N}e^{-\beta PV}(\beta P ){\rm{d}}\, V\\ = \frac{1}{N!} \frac{1}{\lambda^{3N}}\frac{\Gamma(N+1)}{(\beta P)^{N+1}}(\beta P)\\ = \frac{1}{\lambda^{3N}}\Big(\frac{k_{\rm{B}}T}{P}\Big)^{N}

這裡

\lambda

是熱德布羅意波長:

\lambda = \sqrt{\frac{h^2}{2\pi m k_{\rm{B}}T}}

其熱力學勢為:

G = -k_{\rm{B}}T \ln \Delta = -N k_{\rm{B}}T \ln \Big[\frac{1}{\lambda^3}\Big(\frac{k_{\rm{B}}T}{P}\Big)\Big]

其餘不難,可留作習題:

E = k_{\rm{B}}T \Big( \frac{\partial \ln \Delta }{\partial T}\Big)_{N,P}

S = k_{\rm{B}}T \ln \Delta + k_{\rm{B}}T \Big( \frac{\partial \ln \Delta }{\partial T}\Big)_{N, P}

V = - k_{\rm{B}}T \Big( \frac{\partial \ln \Delta }{\partial P}\Big)_{N, T}

\mu = - k_{\rm{B}}T \Big( \frac{\partial \ln \Delta }{\partial N}\Big)_{T,P}

參考文獻:

Donald McQuarrie,

Statistical Mechanics

, Harper & Row, 2000

2。 Kazuyoshi Ikeda, “On the theory of isobaric-isothermal ensemble”,

Progress of Theoretical Physics

, 38:584 (1967),

ibid

。 38:611 (1967)

3。 Mark Tuckerman,

Statistical Mechanics: Theory and Molecular Simulation

, Oxford University Press, 2010