光電反應?使用者20196306533282021-05-21 17:51:11

光電效應是物理學中一個重要而神奇的現象。在高於某特定頻率的電磁波(該頻率稱為極限頻率threshold frequency)照射下,某些物質內部的電子吸收能量後逸出而形成電流,即光生電。

光電現象由德國物理學家赫茲於1887年發現,而正確的解釋為愛因斯坦所提出。科學家們在研究光電效應的過程中,物理學者對光子的量子性質有了更加深入的瞭解,這對波粒二象性概念的提出有重大影響。

光照射到金屬上,引起物質的電性質發生變化。這類光變致電的現象被人們統稱為光電效應(Photoelectric effect)。光電效應分為光電子發射、光電導效應和阻擋層光電效應,又稱光生伏特效應。前一種現象發生在物體表面,又稱外光電效應(photoelectric emission)。後兩種現象發生在物體內部,稱為內光電效應。

按照粒子說,光是由一份一份不連續的光子組成,當某一光子照射到對光靈敏的物質(如硒)上時,它的能量可以被該物質中的某個電子全部吸收。電子吸收光子的能量後,動能立刻增加;如果動能增大到足以克服原子核對它的引力,就能在十億分之一秒時間內飛逸出金屬表面,成為光電子,形成光電流。單位時間內,入射光子的數量愈大,飛逸出的光電子就愈多,光電流也就愈強,這種由光能變成電能自動放電的現象,就叫光電效應。

赫茲於1887年發現光電效應,愛因斯坦第一個成功的解釋了光電效應(金屬表面在光輻照作用下發射電子的效應,發射出來的電子叫做光電子)。光頻率大於某一臨界值時方能發射電子,即截止頻率,對應的光的頻率叫做極限頻率。臨界值取決於金屬材料,而發射電子的能量取決於光的波長而與光強度無關,這一點無法用光的波動性解釋。還有一點與光的波動性相矛盾,即光電效應的瞬時性,按波動性理論,如果入射光較弱,照射的時間要長一些,金屬中的電子才能積累到足夠的能量,飛出金屬表面。可事實是,只要光的頻率高於金屬的極限頻率,光的亮度無論強弱,電子的產生都幾乎是瞬時的,不超過十的負九次方秒。正確的解釋是光必定是由與波長有關的嚴格規定的能量單位(即光子或光量子)所組成。

光電效應裡電子的射出方向不是完全定向的,只是大部分都垂直於金屬表面射出,與光照方向無關。光是電磁波,但是光是高頻震盪的正交電磁場,振幅很小,不會對電子射出方向產生影響。

光電效應說明了光具有粒子性。相對應的,光具有波動性最典型的例子就是光的干涉和衍射。

只要光的頻率超過某一極限頻率,受光照射的金屬表面立即就會逸出光電子,發生光電效應。當在金屬外面加一個閉合電路,加上正向電源,這些逸出的光電子全部到達陽極便形成所謂的光電流。在入射光一定時,增大光電管兩極的正向電壓,提高光電子的動能,光電流會隨之增大。但光電流不會無限增大,要受到光電子數量的約束,有一個最大值,這個值就是飽和電流。所以,當入射光強度增大時,根據光子假設,入射光的強度(即單位時間內透過單位垂直面積的光能)決定於單位時間裡透過單位垂直面積的光子數,單位時間裡透過金屬表面的光子數也就增多,於是,光子與金屬中的電子碰撞次數也增多,因而單位時間裡從金屬表面逸出的光電子也增多,電流也隨之增大。