Tight Binding Approximation(TBA)

緊束縛模型計算石墨烯能帶

Lattice vectors:

a_{1}=\frac{3a}{2}i+\frac{\sqrt{3}a}{2}j ,\quad a_{2}=\frac{3a}{2}i-\frac{\sqrt{3}a}{2}j

where

a

is the lattice constant。 The corresponding reciprocal vectors:

b_{1}=\frac{2\pi}{3a}\hat{k}_{x}+\frac{2\sqrt{3}\pi}{3a}\hat{k}_{y},\quad  b_{2}=\frac{2\pi}{3a}\hat{k}_{x}-\frac{2\sqrt{3}\pi}{3a}\hat{k}_{y}

The lattice has two non-equivalent sites (marked by A and B) with the nearest hopping vectors:

\rho_{1}=\frac{a}{2}i+\frac{\sqrt{3}a}{2}j,\quad  \rho_{2}=\frac{a}{2}i-\frac{\sqrt{3}a}{2}j,\quad  \rho_{3}=-ai

The Bloch states are the normalized orthogonal basis and can be written in the form of Fourier transformation of Wannier basis :

\psi_{nk}(r)=\frac{1}{\sqrt{N}}\sum_{l}e^{ik\cdot l}a_{n}(r,l)\quad

Wannier function

a_{n}(r,l)

is a function of

(r-l)

。 Here we only consider single band model thus the band index n will be omitted。 Considering two inequivalent A,B sites, we can write the Bloch states as two sets:

\varphi_{1}=\frac{1}{\sqrt{N}}\sum_{l}e^{ik\cdot R^{A}_{l}}\phi(r-R^{A}_{l}),\quad \varphi_{2}=\frac{1}{\sqrt{N}}\sum_{l

where N is the number of unit cells,

R^{A/B}_{j}

is the position vector of

A/B

atom in

Jth

unit cell。

\varphi_{1}

and

\varphi_{2}

are the Bloch states of A and B sites。 Because of the similar localization of wavefunctions we usually use the actual atom‘s orbital wavefunctions

\phi

to substitute the Wannier function

a_{n}(r-l)

。 Usually, this is a good approximation。 Except for the

sp_{2}

hybrid orbitals of

\sigma

bonds, every carbon atom has an extra

p_{z}

orbital for the

\pi

bond。 So here we use

2p_{z}

orbital wavefunctions of the carbon atom。 The wavefunction of the whole system can be written in the linear combination of atomic orbitals (LCAO):

\psi(r)=c_{1}\varphi_{1}+c_{2}\varphi_{2}=\frac{1}{\sqrt{N}}\sum_{l,l

To solve the Schordinger equation:

H|\psi\rangle=E|\psi\rangle

we use the

|\varphi_{1}\rangle

and

|\varphi_{2}\rangle

to multiply the equation from the left, we have:

\\ \langle\varphi_{2}|H|\psi\rangle=c_{1}\langle\varphi_{2}|H|\varphi_{1}\rangle+c_{2}\langle\varphi_{2}|H|\varphi_{2}\rangle=E[c_{1}\langle\varphi_{2}|\varphi_{1}\rangle+\langle\varphi_{2}|\varphi_{2}\rangle]

\\ \langle\varphi_{1}|H|\psi\rangle=c_{1}\langle\varphi_{1}|H|\varphi_{1}\rangle+c_{2}\langle\varphi_{1}|H|\varphi_{2}\rangle=E[c_{1}\langle\varphi_{1}|\varphi_{1}\rangle+\langle\varphi_{1}|\varphi_{2}\rangle]

Assume that the overlap of different sites’ orbitals is zero:

\langle\varphi_{i}|\varphi_{j}\rangle=\delta_{ij}

。 So we have:

\\ c_{1}H_{11}+c_{2}H_{12}=c_{1}E, \quad c_{1}H_{21}+c_{2}H_{22}=c_{2}E

where

H_{ij}=<\varphi_{i}|H|\varphi_{j}>

and apparently

H_{12}=H_{21}^{*}

。 In order to get a nontrivial solution for the coefficients, the

H

and

E

must satisfy the secular equation:

\\ \begin{vmatrix} H_{11}-E \quad H_{12}\\ H_{21} \quad H_{22}-E \end{vmatrix} =0

If we look at the determinant we will find that it‘s equal to

det(H-E\cdot I)

which means we are solving the eigenvalues of

H

where

\\ H=\begin{bmatrix} H_{11} \quad H_{12}\\ H_{21} \quad H_{22} \end{bmatrix}

The

H

is written in two orthogonal Bloch basis :

|\varphi_{1}\rangle

and

|\varphi_{2}\rangle

。 Therefore we have:

\\ E=\frac{1}{2} [H_{11}+H_{22}\pm \sqrt{[(H_{11}-H_{22})^{2}+4|H_{12}|^{2}]} ]

Next we compute the matrix elements:

H_{11}=\langle\varphi_{1}|H|\varphi_{1}\rangle=\frac{1}{N}\sum_{ll

since

\phi

is orthogonal and is the local orbital energy eigen-wavefunction。 Similarly:

H_{22}=\langle\varphi_{2}|H|\varphi_{2}\rangle=\frac{1}{N}\sum_{ll

H_{12}=\langle\varphi_{1}|H|\varphi_{2}\rangle=\frac{1}{N}\sum_{l,l

Where

J=\langle\phi(r-R_{l

with

H_{a}=-\frac{\hbar^{2}}{2m}\triangledown^{2}+v_{a}

。 Namely we separate the Hamiltonian into each individual single atomic Hamiltonian part

H_a

and the rest remaining potential part。

Considering that :

\\ \langle\phi(r-R_{l

\\ \quad J=<\phi(r-R_{l

We call

J

as the overlap integral。 Assume that

J

is the same for all nearest interactions。 And if we only consider nearest interaction( only when

|R^A_{l}-R^B_{l

with

\rho_i

being nearest hopping vector, can we get nonzero

J

):

H_{12}=\frac{1}{N}\sum_{l,l

So we get:

E=\varepsilon_{p_{z}}\pm J\sqrt{3+2\cos(\sqrt{3}k_{y} a)+4\cos(\frac{3}{2}k_{x}a)\cos(\frac{\sqrt{3}}{2}k_{y}a)}

Set constant term

\varepsilon_{p_{z}} =0

, then we have:

E(k)=\pm J\sqrt{3+2\cos(\sqrt{3}k_{y} a)+4\cos(\frac{3}{2}k_{x}a)\cos(\frac{\sqrt{3}}{2}k_{y}a)} \\

Using mathematica to plot this band structure :

緊束縛模型計算石墨烯能帶

J=2, kx,ky=[-4*(3)^(-1/2)pi/9a,+4*(3)^(-1/2)pi/9a]

Second Quantization of TBA

Now we repeat this process under the second quantization theory。

A state in Hilbert space can be written in Wannier basis or Bloch basis:

\Psi(r)=\sum_{l}C_{l}a(r-l),\quad \Psi(r)=\sum_{k}C_{k}\psi_{k}(r)

In the summation we omit the band index

n

and spin index

\sigma

H=\int \Psi^{\dagger}(r)h(r)\Psi(r)dr,\quad h(r)=-\frac{\hbar^{2}}{2m}\triangledown^{2}+V(r)

Again, if we only consider nearest hopping and use atom’s actual orbital to substitute the Wannier function then we have :

H=\sum_{l,l

where

J=\langle\phi(r-R_{l}^{B})|V-v_{a}|\phi(r-R_{l}^{A})\rangle

。 Usually we first write

\hat{H}

in the form of

C^{+}_{l}

and

C_{l}

because it‘s easy to understand with clear physical meanings if we take

C^{+}_{l}

and

C_{l}

as production and annihilation operator。 Because of the Fourier transformation relation between

a(r-l)

and

\psi_{k}(r)

, we get:

C_{l}=\frac{1}{\sqrt{N}}\sum_{k}e^{ik\cdot l}C_{k}

We notice that

\sum_{l}C^{\dagger}_{l}C_{l}=\frac{1}{N}\sum_{l}\sum_{k,k

Therefore we have the following two equations:

\sum_{l}C^{\dagger}_{l}C_{l}=\sum_{k}C^{\dagger}_{k}C_{k}

\sum_{l}C^{\dagger}_{l}C_{l+\rho}=\sum_{k}e^{ik\rho}C^{\dagger}_{k}C_{k}

Therefore we can diagonalize the

\hat{H}

in the

C_{k}

basis:

\hat{H}=\sum_{k}(\varepsilon_{0}-J\sum_{\rho}e^{ik\rho})C^{\dagger}_{k}C_{k},\quad \hat{H}=E(k)\hat{n}_{k}

with the particle-number operator

\hat{n}_{k}=\sum_{k}C^{\dagger}_{k}C_{k}

and

E(k)=\varepsilon_{0}-J\sum_{\rho}e^{ik\rho}

As for the graphene, we have A&B nonequivalent sites thus we write

\hat{H}

in

a^{\dagger}_{l}

and

b^{\dagger}_{l}

\hat{H}=\varepsilon_{A}\sum_{l}a^{\dagger}_{l}a_{l}+\varepsilon_{B}\sum_{l}b^{\dagger}_{l}b_{l}-J\sum_{l,\rho_{i}}(a^{\dagger}_{l}b_{l+\rho_{i}}+b^{\dagger}_{l+\rho_{i}}a_{l})

Here we assume on-site energy

\varepsilon_{A}=\varepsilon_{B}=\epsilon_{pz}

。 Then we do Fourier transformation。

\hat{H}=\varepsilon_{A}\sum_{k}a^{\dagger}_{k}a_{k}+\varepsilon_{B}\sum_{k}b^{\dagger}_{k}b_{k}-J\sum_{k,\rho_{i}}(a^{\dagger}_{k}b_{k}e^{ik\cdot \rho_{i}}+h.c.)\\ =N\varepsilon_{pz}-J\sum_{k,\rho_{i}}(a^{\dagger}_{k}b_{k}e^{ik\cdot \rho_{i}}+h.c.)

when we drop the constant

N\varepsilon_{pz}

term, we can write the

\hat{H}

in the matrix form of Nambu basis which preserves the particle hole symmetry:

\hat{H}=\sum_{k}(a_{k}^\dagger,b_{k}^\dagger) \begin{pmatrix} 0 \quad H_{12}(k) \\H_{21}(k) \quad 0  \end{pmatrix}\begin{pmatrix}a_k\\b_k\end{pmatrix}

where

H_{12}(k)=-\sum_{\rho_{i}}Je^{ik\cdot\rho_{i}},H_{21}(k)=H_{12}(k)^{*}

The eigenvalue of matrix is obtained by

{\rm det}(\begin{bmatrix} 0 \quad H_{12}(k)\\ H_{21}(k) \quad 0 \end{bmatrix}-E(k)I)=0

Again if we only consider nearest neighbor hopping we will get:

\\ E(k)=\pm J\sqrt{3+2\cos(\sqrt{3}k_{y} a)+4\cos(\frac{3}{2}k_{x}a)\cos(\frac{\sqrt{3}}{2}k_{y}a)} \\

Dirac Cone and Massless Fermion

According to the rotation symmetry of graphene, we define new x,y axis to let the reciprocal vector in Brillouin zone become like this:

緊束縛模型計算石墨烯能帶

The contour plot of the energy dispersion for the lower band as a function of kx and ky。 The red dash lines mark the first BZ, which is a hexagon。

The the energy dispersion relation

E(k)

is written as :

E(k)=\pm J\sqrt{3+2\cos(\sqrt{3}k_{x} a)+4\cos(\frac{3}{2}k_{y}a)\cos(\frac{\sqrt{3}}{2}k_{x}a)}

There are two kinds of K points in Brillouin zone :

K=(\frac{4\sqrt{3}\pi}{9a},0),\quad K

The equivalent K points are connected by a reciprocal vector。 And in the K(k’) points, the

E(K)=0

E(K)=\pm J\sqrt{3+2cos(\frac{4\sqrt{3}\pi}{9a}\times\sqrt{3}a)+4cos(\frac{4\sqrt{3}\pi}{9a}\times\frac{\sqrt{3}a}{2})cos(\frac{3}{2}\times0)}

\quad \quad=\pm J \sqrt{3+2\times (-\frac{1}{2})+4\times(-\frac{1}{2})}=0

Near these K(K‘) points, the energy bands are linear functions of lattice momentum k。

Consider a small shift

q

around K points:

k_{new}=K+q

, then we have the expansion :

E(K+q)=\pm J \sqrt{3+2cos(\sqrt{3}a(q_{x}+\frac{4\sqrt{3}\pi}{9a}))+4cos(\frac{\sqrt{3}}{2}a(q_{x}+\frac{4\sqrt{3}\pi}{9a}))cos(\frac{3}{2}q_{y}a)}

\quad \quad \approx \pm J \sqrt{2+3qa_{x}+\frac{3}{2}a^{2}q_{x}^{2}+(-2+\frac{3}{4}q_{x}^{2}a^{2}-3q_{x}a)\times(1-\frac{9}{8}q_{y}^{2}a^{2})}

\quad \quad=\pm \frac{3}{2}a\sqrt{q_{x}^{2}+q_{y}^{2}}+O(q^{2})=\pm \frac{3}{2}aq+O(q^{2})= \pm v_{F}\cdot q +O(q^{2})

where

v_{F}=\frac{3}{2}aq

is the Fermi Velocity。 If we omit the higher oder term, then we get

E(K+q)=\pm v_{F}\cdot q

緊束縛模型計算石墨烯能帶

Dirac Cone

As long as the time reversal symmetry and inversion symmetry is preserved, the Dirac cones always exist and are robust agains perturbation。

The

\hat{H}

can be written as :

\hat{H}=v_{F}\sum_{k}(a_{k}^\dagger,b_{k}^\dagger)\begin{pmatrix} 0 \quad q_{x}-iq_{y} \\ q_{x}+iq_{y} \quad 0 \end{pmatrix}\begin{pmatrix}a_k\\b_k\end{pmatrix}

The kernel of the Hamiltonian is the matrix

H(K+q)=v_{F}\begin{bmatrix} 0 \quad q_{x}-iq_{y} \\ q_{x}+iq_{y} \quad 0 \end{bmatrix}

Using Pauli matrix

\sigma_{x}=\begin{bmatrix} 0\quad 1\\ 1\quad 0 \end{bmatrix}

\sigma_{y}=\begin{bmatrix} 0\quad -i\\ i \quad\quad 0 \end{bmatrix}

\sigma_{z}=\begin{bmatrix} 1\quad \quad 0\\ 0\quad -1 \end{bmatrix}

we get:

H(K+q)=v_{F}(q_{x}\sigma_{x}+q_{y}\sigma_{y})=v_{F}q\cdot \sigma

Notice that the electrons near Dirac Cone satisfy the massless Dirac equation:

i\hbar\frac{\partial}{\partial t}\psi=c\alpha\cdot (-i\hbar\triangledown+\beta mc^{2})\psi=c\alpha\cdot (-i\hbar\triangledown)\psi=H\psi

The

H=c\alpha\cdot (-i\hbar\triangledown)

and

H=v_{F}q\cdot\sigma

are of the same form。 The

\gamma_{i}\equiv-i\beta\alpha_{i}

and

\gamma_{i}

can be expressed using Pauli matrix。 For example, if we choose Pauli-Dirac basis, the 4x4 matrix

\gamma_{1}=\begin{bmatrix} 0 \quad-i\sigma_{1}\\ i\sigma_{i} \quad \quad0 \end{bmatrix}

For graphene, the lower band is filled and the upper band is empty, which is known as “half-filling”。 The “half” here means that the number of electrons

N_{e}

over the number of sites( A and B)

N_{s}

is

\frac{N_{e}}{N_{s}}=\frac{1}{2}

To be clear, graphene is compound lattice: There are two sites in each unit cell。 So the number of electrons over the number of unit cells

\frac{N_{e}}{N_{u}}=1

。 However, one can tune the Fermi energy slightly away from the Dirac point by doping。

《固體理論》李正中(第二版)

《Advanced Quantum Mechanics》咯興林(第二版)

《Topological insulators Part III: tight-binding models》Sunkai

Phys620。nb(

2013)